3.605 \(\int x^4 (d+e x^2)^2 (a+b \sin ^{-1}(c x)) \, dx\)

Optimal. Leaf size=241 \[ \frac{1}{5} d^2 x^5 \left (a+b \sin ^{-1}(c x)\right )+\frac{2}{7} d e x^7 \left (a+b \sin ^{-1}(c x)\right )+\frac{1}{9} e^2 x^9 \left (a+b \sin ^{-1}(c x)\right )+\frac{b \left (1-c^2 x^2\right )^{5/2} \left (21 c^4 d^2+90 c^2 d e+70 e^2\right )}{525 c^9}-\frac{2 b \left (1-c^2 x^2\right )^{3/2} \left (63 c^4 d^2+135 c^2 d e+70 e^2\right )}{945 c^9}+\frac{b \sqrt{1-c^2 x^2} \left (63 c^4 d^2+90 c^2 d e+35 e^2\right )}{315 c^9}-\frac{2 b e \left (1-c^2 x^2\right )^{7/2} \left (9 c^2 d+14 e\right )}{441 c^9}+\frac{b e^2 \left (1-c^2 x^2\right )^{9/2}}{81 c^9} \]

[Out]

(b*(63*c^4*d^2 + 90*c^2*d*e + 35*e^2)*Sqrt[1 - c^2*x^2])/(315*c^9) - (2*b*(63*c^4*d^2 + 135*c^2*d*e + 70*e^2)*
(1 - c^2*x^2)^(3/2))/(945*c^9) + (b*(21*c^4*d^2 + 90*c^2*d*e + 70*e^2)*(1 - c^2*x^2)^(5/2))/(525*c^9) - (2*b*e
*(9*c^2*d + 14*e)*(1 - c^2*x^2)^(7/2))/(441*c^9) + (b*e^2*(1 - c^2*x^2)^(9/2))/(81*c^9) + (d^2*x^5*(a + b*ArcS
in[c*x]))/5 + (2*d*e*x^7*(a + b*ArcSin[c*x]))/7 + (e^2*x^9*(a + b*ArcSin[c*x]))/9

________________________________________________________________________________________

Rubi [A]  time = 0.317549, antiderivative size = 241, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {270, 4731, 12, 1251, 897, 1153} \[ \frac{1}{5} d^2 x^5 \left (a+b \sin ^{-1}(c x)\right )+\frac{2}{7} d e x^7 \left (a+b \sin ^{-1}(c x)\right )+\frac{1}{9} e^2 x^9 \left (a+b \sin ^{-1}(c x)\right )+\frac{b \left (1-c^2 x^2\right )^{5/2} \left (21 c^4 d^2+90 c^2 d e+70 e^2\right )}{525 c^9}-\frac{2 b \left (1-c^2 x^2\right )^{3/2} \left (63 c^4 d^2+135 c^2 d e+70 e^2\right )}{945 c^9}+\frac{b \sqrt{1-c^2 x^2} \left (63 c^4 d^2+90 c^2 d e+35 e^2\right )}{315 c^9}-\frac{2 b e \left (1-c^2 x^2\right )^{7/2} \left (9 c^2 d+14 e\right )}{441 c^9}+\frac{b e^2 \left (1-c^2 x^2\right )^{9/2}}{81 c^9} \]

Antiderivative was successfully verified.

[In]

Int[x^4*(d + e*x^2)^2*(a + b*ArcSin[c*x]),x]

[Out]

(b*(63*c^4*d^2 + 90*c^2*d*e + 35*e^2)*Sqrt[1 - c^2*x^2])/(315*c^9) - (2*b*(63*c^4*d^2 + 135*c^2*d*e + 70*e^2)*
(1 - c^2*x^2)^(3/2))/(945*c^9) + (b*(21*c^4*d^2 + 90*c^2*d*e + 70*e^2)*(1 - c^2*x^2)^(5/2))/(525*c^9) - (2*b*e
*(9*c^2*d + 14*e)*(1 - c^2*x^2)^(7/2))/(441*c^9) + (b*e^2*(1 - c^2*x^2)^(9/2))/(81*c^9) + (d^2*x^5*(a + b*ArcS
in[c*x]))/5 + (2*d*e*x^7*(a + b*ArcSin[c*x]))/7 + (e^2*x^9*(a + b*ArcSin[c*x]))/9

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 4731

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSin[c*x], u, x] - Dist[b*c, Int[SimplifyIntegrand[u/Sqrt[1 -
 c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p] && (GtQ[p, 0] ||
 (IGtQ[(m - 1)/2, 0] && LeQ[m + p, 0]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 897

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> With[{q = Denominator[m]}, Dist[q/e, Subst[Int[x^(q*(m + 1) - 1)*((e*f - d*g)/e + (g*x^q)/e)^n*((c*d^2 - b*d
*e + a*e^2)/e^2 - ((2*c*d - b*e)*x^q)/e^2 + (c*x^(2*q))/e^2)^p, x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, b, c
, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegersQ[n,
 p] && FractionQ[m]

Rule 1153

Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(
d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 -
b*d*e + a*e^2, 0] && IGtQ[p, 0] && IGtQ[q, -2]

Rubi steps

\begin{align*} \int x^4 \left (d+e x^2\right )^2 \left (a+b \sin ^{-1}(c x)\right ) \, dx &=\frac{1}{5} d^2 x^5 \left (a+b \sin ^{-1}(c x)\right )+\frac{2}{7} d e x^7 \left (a+b \sin ^{-1}(c x)\right )+\frac{1}{9} e^2 x^9 \left (a+b \sin ^{-1}(c x)\right )-(b c) \int \frac{x^5 \left (63 d^2+90 d e x^2+35 e^2 x^4\right )}{315 \sqrt{1-c^2 x^2}} \, dx\\ &=\frac{1}{5} d^2 x^5 \left (a+b \sin ^{-1}(c x)\right )+\frac{2}{7} d e x^7 \left (a+b \sin ^{-1}(c x)\right )+\frac{1}{9} e^2 x^9 \left (a+b \sin ^{-1}(c x)\right )-\frac{1}{315} (b c) \int \frac{x^5 \left (63 d^2+90 d e x^2+35 e^2 x^4\right )}{\sqrt{1-c^2 x^2}} \, dx\\ &=\frac{1}{5} d^2 x^5 \left (a+b \sin ^{-1}(c x)\right )+\frac{2}{7} d e x^7 \left (a+b \sin ^{-1}(c x)\right )+\frac{1}{9} e^2 x^9 \left (a+b \sin ^{-1}(c x)\right )-\frac{1}{630} (b c) \operatorname{Subst}\left (\int \frac{x^2 \left (63 d^2+90 d e x+35 e^2 x^2\right )}{\sqrt{1-c^2 x}} \, dx,x,x^2\right )\\ &=\frac{1}{5} d^2 x^5 \left (a+b \sin ^{-1}(c x)\right )+\frac{2}{7} d e x^7 \left (a+b \sin ^{-1}(c x)\right )+\frac{1}{9} e^2 x^9 \left (a+b \sin ^{-1}(c x)\right )+\frac{b \operatorname{Subst}\left (\int \left (\frac{1}{c^2}-\frac{x^2}{c^2}\right )^2 \left (\frac{63 c^4 d^2+90 c^2 d e+35 e^2}{c^4}-\frac{\left (90 c^2 d e+70 e^2\right ) x^2}{c^4}+\frac{35 e^2 x^4}{c^4}\right ) \, dx,x,\sqrt{1-c^2 x^2}\right )}{315 c}\\ &=\frac{1}{5} d^2 x^5 \left (a+b \sin ^{-1}(c x)\right )+\frac{2}{7} d e x^7 \left (a+b \sin ^{-1}(c x)\right )+\frac{1}{9} e^2 x^9 \left (a+b \sin ^{-1}(c x)\right )+\frac{b \operatorname{Subst}\left (\int \left (\frac{63 c^4 d^2+90 c^2 d e+35 e^2}{c^8}-\frac{2 \left (63 c^4 d^2+135 c^2 d e+70 e^2\right ) x^2}{c^8}+\frac{3 \left (21 c^4 d^2+90 c^2 d e+70 e^2\right ) x^4}{c^8}-\frac{10 e \left (9 c^2 d+14 e\right ) x^6}{c^8}+\frac{35 e^2 x^8}{c^8}\right ) \, dx,x,\sqrt{1-c^2 x^2}\right )}{315 c}\\ &=\frac{b \left (63 c^4 d^2+90 c^2 d e+35 e^2\right ) \sqrt{1-c^2 x^2}}{315 c^9}-\frac{2 b \left (63 c^4 d^2+135 c^2 d e+70 e^2\right ) \left (1-c^2 x^2\right )^{3/2}}{945 c^9}+\frac{b \left (21 c^4 d^2+90 c^2 d e+70 e^2\right ) \left (1-c^2 x^2\right )^{5/2}}{525 c^9}-\frac{2 b e \left (9 c^2 d+14 e\right ) \left (1-c^2 x^2\right )^{7/2}}{441 c^9}+\frac{b e^2 \left (1-c^2 x^2\right )^{9/2}}{81 c^9}+\frac{1}{5} d^2 x^5 \left (a+b \sin ^{-1}(c x)\right )+\frac{2}{7} d e x^7 \left (a+b \sin ^{-1}(c x)\right )+\frac{1}{9} e^2 x^9 \left (a+b \sin ^{-1}(c x)\right )\\ \end{align*}

Mathematica [A]  time = 0.204813, size = 187, normalized size = 0.78 \[ \frac{315 a x^5 \left (63 d^2+90 d e x^2+35 e^2 x^4\right )+\frac{b \sqrt{1-c^2 x^2} \left (c^8 \left (3969 d^2 x^4+4050 d e x^6+1225 e^2 x^8\right )+4 c^6 \left (1323 d^2 x^2+1215 d e x^4+350 e^2 x^6\right )+24 c^4 \left (441 d^2+270 d e x^2+70 e^2 x^4\right )+160 c^2 e \left (81 d+14 e x^2\right )+4480 e^2\right )}{c^9}+315 b x^5 \sin ^{-1}(c x) \left (63 d^2+90 d e x^2+35 e^2 x^4\right )}{99225} \]

Antiderivative was successfully verified.

[In]

Integrate[x^4*(d + e*x^2)^2*(a + b*ArcSin[c*x]),x]

[Out]

(315*a*x^5*(63*d^2 + 90*d*e*x^2 + 35*e^2*x^4) + (b*Sqrt[1 - c^2*x^2]*(4480*e^2 + 160*c^2*e*(81*d + 14*e*x^2) +
 24*c^4*(441*d^2 + 270*d*e*x^2 + 70*e^2*x^4) + 4*c^6*(1323*d^2*x^2 + 1215*d*e*x^4 + 350*e^2*x^6) + c^8*(3969*d
^2*x^4 + 4050*d*e*x^6 + 1225*e^2*x^8)))/c^9 + 315*b*x^5*(63*d^2 + 90*d*e*x^2 + 35*e^2*x^4)*ArcSin[c*x])/99225

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 339, normalized size = 1.4 \begin{align*}{\frac{1}{{c}^{5}} \left ({\frac{a}{{c}^{4}} \left ({\frac{{e}^{2}{c}^{9}{x}^{9}}{9}}+{\frac{2\,{c}^{9}ed{x}^{7}}{7}}+{\frac{{d}^{2}{c}^{9}{x}^{5}}{5}} \right ) }+{\frac{b}{{c}^{4}} \left ({\frac{\arcsin \left ( cx \right ){e}^{2}{c}^{9}{x}^{9}}{9}}+{\frac{2\,\arcsin \left ( cx \right ){c}^{9}ed{x}^{7}}{7}}+{\frac{\arcsin \left ( cx \right ){d}^{2}{c}^{9}{x}^{5}}{5}}-{\frac{{e}^{2}}{9} \left ( -{\frac{{c}^{8}{x}^{8}}{9}\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{8\,{c}^{6}{x}^{6}}{63}\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{16\,{c}^{4}{x}^{4}}{105}\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{64\,{c}^{2}{x}^{2}}{315}\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{128}{315}\sqrt{-{c}^{2}{x}^{2}+1}} \right ) }-{\frac{2\,{c}^{2}ed}{7} \left ( -{\frac{{c}^{6}{x}^{6}}{7}\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{6\,{c}^{4}{x}^{4}}{35}\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{8\,{c}^{2}{x}^{2}}{35}\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{16}{35}\sqrt{-{c}^{2}{x}^{2}+1}} \right ) }-{\frac{{d}^{2}{c}^{4}}{5} \left ( -{\frac{{c}^{4}{x}^{4}}{5}\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{4\,{c}^{2}{x}^{2}}{15}\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{8}{15}\sqrt{-{c}^{2}{x}^{2}+1}} \right ) } \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(e*x^2+d)^2*(a+b*arcsin(c*x)),x)

[Out]

1/c^5*(a/c^4*(1/9*e^2*c^9*x^9+2/7*c^9*e*d*x^7+1/5*d^2*c^9*x^5)+b/c^4*(1/9*arcsin(c*x)*e^2*c^9*x^9+2/7*arcsin(c
*x)*c^9*e*d*x^7+1/5*arcsin(c*x)*d^2*c^9*x^5-1/9*e^2*(-1/9*c^8*x^8*(-c^2*x^2+1)^(1/2)-8/63*c^6*x^6*(-c^2*x^2+1)
^(1/2)-16/105*c^4*x^4*(-c^2*x^2+1)^(1/2)-64/315*c^2*x^2*(-c^2*x^2+1)^(1/2)-128/315*(-c^2*x^2+1)^(1/2))-2/7*c^2
*e*d*(-1/7*c^6*x^6*(-c^2*x^2+1)^(1/2)-6/35*c^4*x^4*(-c^2*x^2+1)^(1/2)-8/35*c^2*x^2*(-c^2*x^2+1)^(1/2)-16/35*(-
c^2*x^2+1)^(1/2))-1/5*d^2*c^4*(-1/5*c^4*x^4*(-c^2*x^2+1)^(1/2)-4/15*c^2*x^2*(-c^2*x^2+1)^(1/2)-8/15*(-c^2*x^2+
1)^(1/2))))

________________________________________________________________________________________

Maxima [A]  time = 1.47452, size = 424, normalized size = 1.76 \begin{align*} \frac{1}{9} \, a e^{2} x^{9} + \frac{2}{7} \, a d e x^{7} + \frac{1}{5} \, a d^{2} x^{5} + \frac{1}{75} \,{\left (15 \, x^{5} \arcsin \left (c x\right ) +{\left (\frac{3 \, \sqrt{-c^{2} x^{2} + 1} x^{4}}{c^{2}} + \frac{4 \, \sqrt{-c^{2} x^{2} + 1} x^{2}}{c^{4}} + \frac{8 \, \sqrt{-c^{2} x^{2} + 1}}{c^{6}}\right )} c\right )} b d^{2} + \frac{2}{245} \,{\left (35 \, x^{7} \arcsin \left (c x\right ) +{\left (\frac{5 \, \sqrt{-c^{2} x^{2} + 1} x^{6}}{c^{2}} + \frac{6 \, \sqrt{-c^{2} x^{2} + 1} x^{4}}{c^{4}} + \frac{8 \, \sqrt{-c^{2} x^{2} + 1} x^{2}}{c^{6}} + \frac{16 \, \sqrt{-c^{2} x^{2} + 1}}{c^{8}}\right )} c\right )} b d e + \frac{1}{2835} \,{\left (315 \, x^{9} \arcsin \left (c x\right ) +{\left (\frac{35 \, \sqrt{-c^{2} x^{2} + 1} x^{8}}{c^{2}} + \frac{40 \, \sqrt{-c^{2} x^{2} + 1} x^{6}}{c^{4}} + \frac{48 \, \sqrt{-c^{2} x^{2} + 1} x^{4}}{c^{6}} + \frac{64 \, \sqrt{-c^{2} x^{2} + 1} x^{2}}{c^{8}} + \frac{128 \, \sqrt{-c^{2} x^{2} + 1}}{c^{10}}\right )} c\right )} b e^{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(e*x^2+d)^2*(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

1/9*a*e^2*x^9 + 2/7*a*d*e*x^7 + 1/5*a*d^2*x^5 + 1/75*(15*x^5*arcsin(c*x) + (3*sqrt(-c^2*x^2 + 1)*x^4/c^2 + 4*s
qrt(-c^2*x^2 + 1)*x^2/c^4 + 8*sqrt(-c^2*x^2 + 1)/c^6)*c)*b*d^2 + 2/245*(35*x^7*arcsin(c*x) + (5*sqrt(-c^2*x^2
+ 1)*x^6/c^2 + 6*sqrt(-c^2*x^2 + 1)*x^4/c^4 + 8*sqrt(-c^2*x^2 + 1)*x^2/c^6 + 16*sqrt(-c^2*x^2 + 1)/c^8)*c)*b*d
*e + 1/2835*(315*x^9*arcsin(c*x) + (35*sqrt(-c^2*x^2 + 1)*x^8/c^2 + 40*sqrt(-c^2*x^2 + 1)*x^6/c^4 + 48*sqrt(-c
^2*x^2 + 1)*x^4/c^6 + 64*sqrt(-c^2*x^2 + 1)*x^2/c^8 + 128*sqrt(-c^2*x^2 + 1)/c^10)*c)*b*e^2

________________________________________________________________________________________

Fricas [A]  time = 2.08342, size = 540, normalized size = 2.24 \begin{align*} \frac{11025 \, a c^{9} e^{2} x^{9} + 28350 \, a c^{9} d e x^{7} + 19845 \, a c^{9} d^{2} x^{5} + 315 \,{\left (35 \, b c^{9} e^{2} x^{9} + 90 \, b c^{9} d e x^{7} + 63 \, b c^{9} d^{2} x^{5}\right )} \arcsin \left (c x\right ) +{\left (1225 \, b c^{8} e^{2} x^{8} + 10584 \, b c^{4} d^{2} + 50 \,{\left (81 \, b c^{8} d e + 28 \, b c^{6} e^{2}\right )} x^{6} + 12960 \, b c^{2} d e + 3 \,{\left (1323 \, b c^{8} d^{2} + 1620 \, b c^{6} d e + 560 \, b c^{4} e^{2}\right )} x^{4} + 4480 \, b e^{2} + 4 \,{\left (1323 \, b c^{6} d^{2} + 1620 \, b c^{4} d e + 560 \, b c^{2} e^{2}\right )} x^{2}\right )} \sqrt{-c^{2} x^{2} + 1}}{99225 \, c^{9}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(e*x^2+d)^2*(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

1/99225*(11025*a*c^9*e^2*x^9 + 28350*a*c^9*d*e*x^7 + 19845*a*c^9*d^2*x^5 + 315*(35*b*c^9*e^2*x^9 + 90*b*c^9*d*
e*x^7 + 63*b*c^9*d^2*x^5)*arcsin(c*x) + (1225*b*c^8*e^2*x^8 + 10584*b*c^4*d^2 + 50*(81*b*c^8*d*e + 28*b*c^6*e^
2)*x^6 + 12960*b*c^2*d*e + 3*(1323*b*c^8*d^2 + 1620*b*c^6*d*e + 560*b*c^4*e^2)*x^4 + 4480*b*e^2 + 4*(1323*b*c^
6*d^2 + 1620*b*c^4*d*e + 560*b*c^2*e^2)*x^2)*sqrt(-c^2*x^2 + 1))/c^9

________________________________________________________________________________________

Sympy [A]  time = 23.9951, size = 415, normalized size = 1.72 \begin{align*} \begin{cases} \frac{a d^{2} x^{5}}{5} + \frac{2 a d e x^{7}}{7} + \frac{a e^{2} x^{9}}{9} + \frac{b d^{2} x^{5} \operatorname{asin}{\left (c x \right )}}{5} + \frac{2 b d e x^{7} \operatorname{asin}{\left (c x \right )}}{7} + \frac{b e^{2} x^{9} \operatorname{asin}{\left (c x \right )}}{9} + \frac{b d^{2} x^{4} \sqrt{- c^{2} x^{2} + 1}}{25 c} + \frac{2 b d e x^{6} \sqrt{- c^{2} x^{2} + 1}}{49 c} + \frac{b e^{2} x^{8} \sqrt{- c^{2} x^{2} + 1}}{81 c} + \frac{4 b d^{2} x^{2} \sqrt{- c^{2} x^{2} + 1}}{75 c^{3}} + \frac{12 b d e x^{4} \sqrt{- c^{2} x^{2} + 1}}{245 c^{3}} + \frac{8 b e^{2} x^{6} \sqrt{- c^{2} x^{2} + 1}}{567 c^{3}} + \frac{8 b d^{2} \sqrt{- c^{2} x^{2} + 1}}{75 c^{5}} + \frac{16 b d e x^{2} \sqrt{- c^{2} x^{2} + 1}}{245 c^{5}} + \frac{16 b e^{2} x^{4} \sqrt{- c^{2} x^{2} + 1}}{945 c^{5}} + \frac{32 b d e \sqrt{- c^{2} x^{2} + 1}}{245 c^{7}} + \frac{64 b e^{2} x^{2} \sqrt{- c^{2} x^{2} + 1}}{2835 c^{7}} + \frac{128 b e^{2} \sqrt{- c^{2} x^{2} + 1}}{2835 c^{9}} & \text{for}\: c \neq 0 \\a \left (\frac{d^{2} x^{5}}{5} + \frac{2 d e x^{7}}{7} + \frac{e^{2} x^{9}}{9}\right ) & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(e*x**2+d)**2*(a+b*asin(c*x)),x)

[Out]

Piecewise((a*d**2*x**5/5 + 2*a*d*e*x**7/7 + a*e**2*x**9/9 + b*d**2*x**5*asin(c*x)/5 + 2*b*d*e*x**7*asin(c*x)/7
 + b*e**2*x**9*asin(c*x)/9 + b*d**2*x**4*sqrt(-c**2*x**2 + 1)/(25*c) + 2*b*d*e*x**6*sqrt(-c**2*x**2 + 1)/(49*c
) + b*e**2*x**8*sqrt(-c**2*x**2 + 1)/(81*c) + 4*b*d**2*x**2*sqrt(-c**2*x**2 + 1)/(75*c**3) + 12*b*d*e*x**4*sqr
t(-c**2*x**2 + 1)/(245*c**3) + 8*b*e**2*x**6*sqrt(-c**2*x**2 + 1)/(567*c**3) + 8*b*d**2*sqrt(-c**2*x**2 + 1)/(
75*c**5) + 16*b*d*e*x**2*sqrt(-c**2*x**2 + 1)/(245*c**5) + 16*b*e**2*x**4*sqrt(-c**2*x**2 + 1)/(945*c**5) + 32
*b*d*e*sqrt(-c**2*x**2 + 1)/(245*c**7) + 64*b*e**2*x**2*sqrt(-c**2*x**2 + 1)/(2835*c**7) + 128*b*e**2*sqrt(-c*
*2*x**2 + 1)/(2835*c**9), Ne(c, 0)), (a*(d**2*x**5/5 + 2*d*e*x**7/7 + e**2*x**9/9), True))

________________________________________________________________________________________

Giac [B]  time = 1.26101, size = 805, normalized size = 3.34 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(e*x^2+d)^2*(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

1/9*a*x^9*e^2 + 2/7*a*d*x^7*e + 1/5*a*d^2*x^5 + 1/5*(c^2*x^2 - 1)^2*b*d^2*x*arcsin(c*x)/c^4 + 2/5*(c^2*x^2 - 1
)*b*d^2*x*arcsin(c*x)/c^4 + 2/7*(c^2*x^2 - 1)^3*b*d*x*arcsin(c*x)*e/c^6 + 1/5*b*d^2*x*arcsin(c*x)/c^4 + 6/7*(c
^2*x^2 - 1)^2*b*d*x*arcsin(c*x)*e/c^6 + 1/25*(c^2*x^2 - 1)^2*sqrt(-c^2*x^2 + 1)*b*d^2/c^5 + 1/9*(c^2*x^2 - 1)^
4*b*x*arcsin(c*x)*e^2/c^8 + 6/7*(c^2*x^2 - 1)*b*d*x*arcsin(c*x)*e/c^6 - 2/15*(-c^2*x^2 + 1)^(3/2)*b*d^2/c^5 +
2/49*(c^2*x^2 - 1)^3*sqrt(-c^2*x^2 + 1)*b*d*e/c^7 + 4/9*(c^2*x^2 - 1)^3*b*x*arcsin(c*x)*e^2/c^8 + 2/7*b*d*x*ar
csin(c*x)*e/c^6 + 1/5*sqrt(-c^2*x^2 + 1)*b*d^2/c^5 + 6/35*(c^2*x^2 - 1)^2*sqrt(-c^2*x^2 + 1)*b*d*e/c^7 + 2/3*(
c^2*x^2 - 1)^2*b*x*arcsin(c*x)*e^2/c^8 + 1/81*(c^2*x^2 - 1)^4*sqrt(-c^2*x^2 + 1)*b*e^2/c^9 - 2/7*(-c^2*x^2 + 1
)^(3/2)*b*d*e/c^7 + 4/9*(c^2*x^2 - 1)*b*x*arcsin(c*x)*e^2/c^8 + 4/63*(c^2*x^2 - 1)^3*sqrt(-c^2*x^2 + 1)*b*e^2/
c^9 + 2/7*sqrt(-c^2*x^2 + 1)*b*d*e/c^7 + 1/9*b*x*arcsin(c*x)*e^2/c^8 + 2/15*(c^2*x^2 - 1)^2*sqrt(-c^2*x^2 + 1)
*b*e^2/c^9 - 4/27*(-c^2*x^2 + 1)^(3/2)*b*e^2/c^9 + 1/9*sqrt(-c^2*x^2 + 1)*b*e^2/c^9